Publications
-
2019
Abstract
Background: Antibiotic resistance is a global public health threat. Water from human activities is collected at wastewater treatment plants where processes often do not sufficiently neutralize antibiotic resistant bacteria and genes, which are further shed into the local environment. This protocol outlines the steps to conduct a systematic review based on the Population, Exposure, Comparator and Outcome (PECO) framework, aiming at answering the question “Are antimicrobial-resistant enterobacteriaceae and antimicrobial resistance genes present (O) in air and water samples (P) taken either near or downstream or downwind or down-gradient from wastewater treatment plants (E), as compared to air and water samples taken either further away or upstream or upwind or up-gradient from such wastewater treatment plant (C)?” Presence of antimicrobial-resistant bacteria and genes will be quantitatively measured by extracting their prevalence or concentration, depending on the reviewed study.
Methods: We will search PubMed, EMBASE, the Cochrane database and Web of Science for original articles published from 1 Jan 2000 to 3 Sep 2018 with language restriction. Articles will undergo a relevance and a design screening process. Data from eligible articles will be extracted by two independent reviewers. Further, we will perform a risk of bias assessment using a decision matrix. We will synthesize and present results in narrative and tabular form and will perform a meta-analysis if heterogeneity of results allows it.
Discussion: Antibiotic resistance in environmental samples around wastewater treatment plants may pose a risk of exposure to workers and nearby residents. Results from the systematic review outlined in this protocol will allow to estimate the extend of exposure, to inform policy making and help to design future studies.
Link
2021Abstract
Antibiotic resistance has become a serious global health threat. Wastewater treatment plants may become unintentional collection points for bacteria resistant to antimicrobials. Little is known about the transmission of antibiotic resistance from wastewater treatment plants to humans, most importantly to wastewater treatment plant workers and residents living in the vicinity. We aim to deliver precise information about the methods used in the AWARE (Antibiotic Resistance in Wastewater: Transmission Risks for Employees and Residents around Wastewater Treatment Plants) study. Within the AWARE study, we gathered data on the prevalence of two antibiotic resistance phenotypes, ESBL-producing E. coli and carbapenemase-producing Enterobacteriaceae, as well as on their corresponding antibiotic resistance genes isolated from air, water, and sewage samples taken from inside and outside of different wastewater treatment plants in Germany, the Netherlands, and Romania. Additionally, we analysed stool samples of wastewater treatment plant workers, nearby residents, and members of a comparison group living ≥ 1000m away from the closest WWTP. To our knowledge, this is the first study investigating the potential spread of ESBL-producing E. coli, carbapenemase-producing Enterobacteriaceae, and antibiotic resistance genes from WWTPs to workers, the environment, and nearby residents. Quantifying the contribution of different wastewater treatment processes to the removal efficiency of ESBL-producing E. coli, carbapenemase-producing Enterobacteriaceae, and antibiotic resistance genes will provide us with evidence-based support for possible mitigation strategies.
Link
Abstract
To investigate whether wastewater treatment plant (WWTP) workers and residents living in close proximity to a WWTP have elevated carriage rates of ESBL-producing Enterobacterales, as compared to the general population. From 2018 to 2020, we carried out a cross-sectional study in Germany, the Netherlands, and Romania among WWTP workers (N = 344), nearby residents (living ≤ 300 m away from WWTPs; N = 431) and distant residents (living ≥ 1000 m away = reference group; N = 1165). We collected information on potential confounders via questionnaire. Culture of participants’ stool samples was performed with ChromID®-ESBL agar plates and species identification with MALDI-TOF–MS. We used logistic regression to estimate the odds ratio (OR) for carrying ESBL-producing E. coli (ESBL-EC). Sensitivity analyses included stratification by country and interaction models using country as secondary exposure. Prevalence of ESBL-EC was 11% (workers), 29% (nearby residents), and 7% (distant residents), and higher in Romania (28%) than in Germany (7%) and the Netherlands (6%). Models stratified by country showed that within the Romanian population, WWTP workers are about twice as likely (aOR = 2.34, 95% CI: 1.22–4.50) and nearby residents about three times as likely (aOR = 3.17, 95% CI: 1.80–5.59) to be ESBL-EC carriers, when compared with distant residents. In stratified analyses by country, we found an increased risk for carriage of ESBL-EC in Romanian workers and nearby residents. This effect was higher for nearby residents than for workers, which suggests that, for nearby residents, factors other than the local WWTP could contribute to the increased carriage.
Link
2022Abstract
Antibiotic resistance (AR) is currently a major threat to global health, calling for a One Health approach to be properly understood, monitored, tackled, and managed. Potential risk factors for AR are often studied in specific high-risk populations, but are still poorly understood in the general population. Our aim was to explore, describe, and characterize potential risk factors for carriage of Extended-Spectrum Beta-Lactamase-resistant Escherichia coli (ESBL-EC) in a large sample of European individuals aged between 16 and 67 years recruited from the general population in Southern Germany, the Netherlands, and Romania. Questionnaire and stool sample collection for this cross-sectional study took place from September 2018 to March 2020. Selected cultures of participants’ stool samples were analyzed for detection of ESBL-EC. A total of 1183 participants were included in the analyses: 333 from Germany, 689 from the Netherlands, and 161 from Romania. Travels to Northern Africa (adjusted Odds Ratio, aOR 4.03, 95% Confidence Interval, CI 1.67–9.68), Sub-Saharan Africa (aOR 4.60, 95% CI 1.60–13.26), and Asia (aOR 4.08, 95% CI 1.97–8.43) were identified as independent risk factors for carriage of ESBL-EC. Therefore, travel to these regions should continue to be routinely asked about by clinical practitioners as possible risk factors when considering antibiotic therapy.
Link
-
Dissemination PlanSOP Pre-pilot Epidemiology
-
June 2018
April 2020
December 2020